88 research outputs found

    Effects of Friedreich's ataxia (GAA)(n)·(TTC)(n) repeats on RNA synthesis and stability

    Get PDF
    Expansions of (GAA)(n) repeats within the first intron of the frataxin gene reduce its expression, resulting in a hereditary neurodegenerative disorder, Friedreich's ataxia. While it is generally believed that expanded (GAA)(n) repeats block transcription elongation, fine mechanisms responsible for gene repression are not fully understood. To follow the effects of (GAA)(n)·(TTC)(n) repeats on gene expression, we have chosen E. coli as a convenient model system. (GAA)(n)·(TTC)(n) repeats were cloned into bacterial plasmids in both orientations relative to a promoter, and their effects on transcription and RNA stability were evaluated both in vitro and in vivo. Expanded (GAA)(n) repeats in the sense strand for transcription caused a significant decrease in the mRNA levels in vitro and in vivo. This decrease was likely due to the tardiness of the RNA polymerase within expanded (GAA)(n) runs but was not accompanied by the enzyme's dissociation and premature transcription termination. Unexpectedly, positioning of normal- and carrier-size (TTC)(n) repeats into the sense strand for transcription led to the appearance of RNA transcripts that were truncated within those repetitive runs in vivo. We have determined that these RNA truncations are consistent with cleavage of the full-sized mRNAs at (UUC)(n) runs by the E. coli degradosome

    Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides

    Get PDF
    Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity

    Changing climate both increases and decreases European river floods

    Get PDF
    Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere. These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe. Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe, because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results—arising from the most complete database of European flooding so far—suggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century, suggesting that climate-driven changes are already happening and supporting calls for the consideration of climate change in flood risk management

    Changing climate shifts timing of European floods

    Get PDF
    A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale

    Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil

    No full text
    RNA polymerase II (RNAPII) in eukaryotic cells drives transcription of most messenger RNAs. RNAPII core enzyme is composed of 12 polypeptides where Rpb1 is the largest subunit. To further understand the mechanisms of RNAPII transcription, we isolated and characterized novel point mutants of RPB1 that are sensitive to the nucleotide-depleting drug 6-azauracil (6AU). In this work we reisolated the rpo21-24/rpb1-E1230K allele, which reduces the interaction of RNAPII–TFIIS, and identified five new point mutations in RPB1 that cause hypersensitivity to 6AU. The novel mutants affect highly conserved residues of Rpb1 and have differential genetic and biochemical effects. Three of the mutations affect the “lid” and “rudder,” two small loops suggested by structural studies to play a central role in the separation of the RNA–DNA hybrids. Most interestingly, two mutations affecting the catalytic center (rpb1-N488D) and the homology box G (rpb1-E1103G) have strong opposite effects on the intrinsic in vitro polymerization rate of RNAPII. Moreover, the synthetic interactions of these mutants with soh1, spt4, and dst1 suggest differential in vivo effects

    Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism

    Get PDF
    During transcription elongation, RNA polymerase has been assumed to attain equilibrium between pre- and post-translocated states rapidly relative to the subsequent catalysis. Under this assumption, recent single-molecule studies proposed a branched Brownian ratchet mechanism that necessitates a putative secondary nucleotide binding site on the enzyme. By challenging individual yeast RNA polymerase II with a nucleosomal barrier, we separately measured the forward and reverse translocation rates. Surprisingly, we found that the forward translocation rate is comparable to the catalysis rate. This finding reveals a linear, non-branched ratchet mechanism for the nucleotide addition cycle in which translocation is one of the rate-limiting steps. We further determined all the major on- and off-pathway kinetic parameters in the elongation cycle. The resulting translocation energy landscape shows that the off-pathway states are favored thermodynamically but not kinetically over the on-pathway states, conferring the enzyme its propensity to pause and furnishing the physical basis for transcriptional regulation
    corecore